DATAVORTEX
TECHNOIOGIES

Few-body physics with many processors

M. Zimmermann ${ }^{1}$, S. I. Betelu ${ }^{2}$, M. A. Efremov ${ }^{1}$, W. P. Schleich ${ }^{1}$
${ }^{1}$ Institut für Quantenphysik and Center for Integrated Quantum Science and Technology $I Q^{S T}$, Universität Ulm, Ulm
${ }^{2}$ Department of Mathematics, University of North Texas, Denton

Quantum-mechanical three-body system

Goals:

- Obtain energies E_{k} and wave functions $\psi_{k}(\vec{R}, \vec{r})$
- Investigate the universal regime for a resonant two-body interaction U_{2} (independent of its nature and/or shape)
- Study the properties of the three-body system for different
- dimensionality (1D, 2D or 3D)
- mass ratio m / M
- symmetry of two-body resonance (s-wave or p-wave)

Dimensionality and resonance symmetry

	s-wave resonance	p-wave resonance
3	$\begin{aligned} & E_{k} \sim \exp (-\alpha k) \quad N_{b}=\infty \\ & \mathcal{V}(R) \sim-\frac{1}{m R^{2}} \end{aligned}$ (Efimov effect)	$\begin{aligned} E_{k} & \sim-\left(k-k_{*}\right)^{6} \\ \mathcal{V}(R) & \sim-\frac{1}{m R^{3}} \quad N_{b}<\infty \end{aligned}$
2	$\begin{aligned} & E_{k} \sim-\frac{1}{(k-\delta)^{2}} \quad N_{b}<\infty \\ & \mathcal{V}(R) \sim-\frac{1}{m R} \quad \xi_{0} \ll R \ll a_{0}^{(2)} \end{aligned}$	1) $\ell=0$: $E_{k} \sim ?$ 2) $\begin{aligned} & \ell= \pm 1: \\ & E_{k} \sim \exp \left[-2 \exp \left(2 \pi \frac{m}{M} k+\theta\right)\right] \\ & \quad N_{b}=\infty \end{aligned}$

[1] F.F. Bellotti et al., J. Phys. B: At.Mol.Opt.Phys. 46, 055301 (2013)
[2] M.A. Efremov, L. Plimak, M. Yu. Ivanov, W.P. Schleich, PRL 111, 113201 (2013)
[3] S. Moroz and Y. Nishida, PRA 90, 063631 (2014)

Stationary three-body Schrödinger equation

$$
\begin{aligned}
\underbrace{\left[-\frac{\hbar^{2}}{M} \Delta_{\vec{R}}-\frac{\hbar^{2}}{2 \mu_{2}} \Delta_{\vec{r}}+U(\vec{R}, \vec{r})\right]}_{\hat{H}} \psi_{k}(\vec{R}, \vec{r}) & =E_{k} \psi_{k}(\vec{R}, \vec{r}) \\
\left.\psi_{k}(\vec{R}, \vec{r})\right|_{|\vec{R}| \rightarrow \infty,|\vec{r}| \rightarrow \infty} & =0
\end{aligned}
$$

\Rightarrow Obtain energies E_{k} and wave functions $\psi_{k}(\vec{R}, \vec{r})$

Numerical approach

1. Discretization: Obtain accurate, partial representation of the spectrum by a sufficient small matrix $\left(\geq 10^{8} \times 10^{8}\right)$

\Rightarrow Spectral methods
2. Diagonalization: Extract eigenvalues of interest

\Rightarrow Arnoldi iteration, Lanczos methods

Implementation on the Data Vortex (example)

1. Sparse matrix storage format
dim: Matrix dimension
$n z$: Number of non-zero elements per row

$$
N=100: \text { Matrix size } 10^{8} \times 10^{8} \approx 450 \mathrm{~GB}
$$

2. Parallel (partial) matrix generation (No communication)

Implementation on the Data Vortex

3. Eigenvalue/-vector calculation

We implemented a parallel version of ARPACK (Arnoldi iteration package) using MPI on the DataVortex.
4. Basic routine: Parallelized matrix-vector product

Implementation on the Data Vortex

5. Communication

Broadcast y_{i} to all nodes via the DV network
Number of iterations: 10 000-500 000

Analysis with Data Vortex profiler

Results for three particles in 2D:

 universal behaviour and s-wave resonance$$
M / m=10^{4}
$$

$$
E_{b}^{s}=10^{-4} \frac{1}{\mu_{2} \xi_{0}^{2}}
$$

